
An Efficient Guarding by Detecting Intrusions in 
Multi-Tier Web Applications  

 
A Yugandhara Rao1, Meher Divya Tatavarthi2, S P Ravi Teja Yeeramilli2, Mohan Raj Simhadri2

, Bhadur Sayyad2 

 
 1Asstistant Professor, 2B.Tech student 

Computer Science & Engineering, Lendi Institute of Engineering and Technology (LIET) 
                                                                             Vizianagaram, A.P, India 
 
 
Abstract—Internet services and applications have become an 
inextricable part of daily life, enabling communication and the 
management of personal information from anywhere. To 
accommodate this increase in application and data complexity, 
web services have moved to a multitier design wherein the 
web server runs the application front-end logic and data are 
outsourced to a database or file server. In this paper, we 
present Efficient Guarding, an IDS system that models the 
network behavior of user sessions across both the front-end 
web server and the back-end database. By monitoring both 
web and subsequent database requests, we are able to ferret 
out attacks that independent IDS would not be able to identify. 
Furthermore, we quantify the limitations of any multitier IDS 
in terms of training sessions and functionality coverage. We 
implemented Efficient Guarding using an Apache web server 
with MySQL and lightweight virtualization. We then collected 
and processed real-world traffic over a 15-day period of 
system deployment in both dynamic and static web 
applications. Finally, using Efficient Guarding, we were able 
to expose a wide range of attacks with 100 percent accuracy 
while maintaining 0 percent false positives for static web 
services and 0.6 percent false positives for dynamic web 
services. 
 
Keywords- Anomaly detection; multitier web application; 
virtualization 
 

I. INTRODUCTION 
Flaws or Drawbacks with Existing System: 
• In existing system both the web and the database 

servers are vulnerable.  
• Attacks are network-borne and come from the web 

clients; they can launch application-layer attacks to 
compromise the web servers they are connecting to.  

• The attackers can bypass the web server to directly 
attack the database server.  

• Attacker may take over the web server after the attack, 
and that afterwards they can obtain full control of the 
web server to launch subsequent attacks. 

For example, the attackers could modify the application 
logic of the web applications, eavesdrop or hijack other 
users’ web requests, or intercept and modify the database 
queries to steal sensitive data beyond their privileges. 
 
Proposed System: 
Some previous approaches have detected intrusions or 
vulnerabilities by statically analyzing the source code or 
executables. Others dynamically track the information flow 
to understand taint propagations and detect intrusions. In an 
Efficient Guarding, the new container-based web server 

architecture enables us to separate the different information 
flows by each session. This provides a means of tracking 
the information flow from the web server to the database 
server for each session. Our approach also does not require 
us to analyze the source code or know the application logic. 
For the static web page, our Efficient Guarding approach 
does not require application logic for building a model. 
However, as we will discuss, although we do not require 
the full application logic for dynamic web services, we do 
need to know the basic user operations in order to model 
normal behavior. 
Advantages of Proposed Systems: 
• The proposed system is well-correlated model that 

provides an effective mechanism to detect the different 
types of attacks.  

• The proposed system will also create a causal mapping 
profile by taking both the web server and DB traffic 
into account. 

• It provides a better characterization for anomaly 
detection with the correlation of input streams because 
the intrusion sensor has a more precise normality 
model that detects a wider range of threats.  

• The proposed system will also isolate the flow of 
information from each web server session with a 
lightweight virtualization. 
 

Problem Statement: 
Lot of existing intrusion Detection Systems (IDSs) 
examines the network packets individually within both the 
web server and the database system. However, there is very 
little work being performed on multi tiered Anomaly 
Detection (AD) systems that generate models of network 
behavior for both web and database network interactions. 
In such multi tiered architectures, the back-end database 
server is often protected behind a firewall while the web 
servers are remotely accessible over the Internet. 
Unfortunately, though they are protected from direct 
remote attacks, the back-end systems are susceptible to 
attacks that use web requests as a means to exploit the back 
end. In order to protect multi tiered web services, an 
efficient system called as Intrusion detection systems is 
needed to detect known attacks by matching misused traffic 
patterns or signature.  
 

II. RELATED WORK 
A network Intrusion Detection System (IDS) can be 
classified into two types: anomaly detection and misuse 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 826



detection .Anomaly detection first requires the IDS to 
define and characterize the correct and acceptable static 
form and dynamic behavior of the system, which can then 
be used to detect abnormal changes or anomalous 
behaviors . The boundary between acceptable and 
anomalous forms of stored code and data is precisely 
definable. Behavior models are built by performing a 
statistical analysis on historical data or by using rule-based 
approaches to specify behavior patterns. An anomaly 
detector then compares actual usage patterns against 
established models to identify abnormal events. Our 
detection approach belongs to anomaly detection , and we 
depend on a training phase to build the correct model. As 
some legitimate updates may cause model drift, there area 
number of approaches that are trying to solve this problem. 
Our detection may run into the same problem; in such a 
case, our model should be retrained for each shift. Intrusion 
alerts correlation provides a collection of components that 
transform intrusion detection sensor alerts into succinct 
intrusion reports in order to reduce the number of replicated 
alerts, false positives, and non-relevant positives. It also 
fuses the alerts from different levels describing a single 
attack, with the goal of producing a succinct overview of 
security-related activity on the network. It focuses 
primarily on abstracting the low-level sensor alerts and 
providing compound, logical, high-level alert events to the 
users. An Efficient Guarding differs from this type of 
approach that correlates alerts from independent IDSes. 
Rather, An Efficient Guarding operates on multiple feeds 
of network traffic using single IDS that looks across 
sessions to produce an alert without correlating or 
summarizing the alerts produced by other independent 
IDSs. An IDS such as also uses temporal information to 
detect intrusions. An Efficient Guarding, however, does not 
correlate events on a time basis, which runs the risk of 
mistakenly considering independent but concurrent events 
as correlated events. An Efficient Guarding  does not have 
such a limitation as it uses the container ID for each session 
to causally map the related events, whether they be 
concurrent or not. Since databases always contain more 
valuable information, they should receive the highest level 
of protection. Therefore, significant research efforts have 
been made on database IDS and database firewalls. These 
softwares  , such as Green SQL, work as a reverse proxy 
for database connections. Instead of connecting to a 
database server, web applications will first connect to a 
database firewall. SQL queries are analyzed; if they’re 
deemed safe, they are then forwarded to the back-end 
database server. The system proposed in composes both 
web IDS and database IDS to achieve more accurate 
detection, and it also uses a reverse HTTP proxy to 
maintain a reduced level of service in the presence of false 
positives. However, we found that certain types of attack 
utilize normal traffics and cannot be detected by either the 
web IDS or the database IDS. In such cases, there would be 
no alerts to correlate. Some previous approaches have 
detected intrusions or vulnerabilities by statically analyzing 
the source code or executables dynamically track the 
information flow to understand taint propagations and 
detect intrusions. In An Efficient Guarding, the new 
container-based web server architecture enables us to 

separate the different information flows by each session. 
This provides a means of tracking the information flow 
from the web server to the database server for each session. 
Our approach also does not require us to analyze the source 
code or know the application logic. For the static web page, 
our An Efficient Guarding approach does not require 
application logic for building a model. However, as we will 
discuss, although we do not require the full application 
logic for dynamic web services, we do need to know the 
basic user operations in order to model normal behavior . In 
addition, validating input is useful to detect or prevent SQL 
or XSS injection attacks. This is orthogonal to the An 
Efficient Guarding   approach, which can utilize input 
validation as an additional defense. However, we have 
found that An Efficient Guarding   can detect SQL injection 
attacks by taking the structures of web requests and 
database queries without looking into the values of input 
parameters (i.e., no input validation at the web 
server).Virtualization is used to isolate objects and enhance 
security performance. Full virtualization and para-
virtualization are not the only approaches being taken. An 
alternative is a lightweight virtualization, such as OpenVZ, 
Parallels Virtuozzo, or Linux-VServer . In general, these 
are based on some sort of container concept. With 
containers, a group of processes still appears to have its 
own dedicated system, yetit is running in an isolated 
environment. On the other hand, lightweight containers can 
have considerable performance advantages over full 
virtualization orpara-virtualization. Thousands of 
containers can run on a single physical host. There are also 
some desktop systems , that use light weight virtualization 
to isolate different application instances. Such 
virtualization techniques are commonly used for isolation 
and containment of attacks. However, in our An Efficient 
Guarding, we utilized the container ID to separate session 
traffic as a way of extracting and identifying causal 
relationships between web server requests and database 
query events. CLAMP is an architecture for preventing data 
leaks even in the presence of attacks. By isolating code at 
the web server layer and data at the database layer by users, 
CLAMP guarantees that a user’s sensitive data can only be 
accessed by code running on behalf of different users. In 
contrast, An Efficient Guarding  focuses on modeling the 
mapping patterns between HTTP requests and DB queries 
to detect malicious user sessions. There are additional 
differences between these two in terms of requirements and 
focus. CLAMP requires modification to the existing 
application code, and the Query Restrictor works as a proxy 
to mediate all database access requests. Moreover, resource 
requirements and overhead differ in order of magnitude: An 
Efficient Guarding uses process isolation whereas CLAMP 
requires platform virtualization, and CLAMP provides 
more coarse-grained isolation than An Efficient Guarding . 
However, An Efficient Guarding  would be ineffective at 
detecting attacks if it were to use the coarse-grained 
isolation as used in CLAMP. Building the mapping model 
in An Efficient Guarding would require a large number of 
isolated web stack instances so that mapping patterns 
would appear across different session instances. 
 
 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 827



III. ATTACKS 
1. Privilege Escalation Attack: 
Let’s assume that the website serves both regular users and 
administrators. For a regular user, the web request ru will 
trigger the set of SQL queries Qu; for an administrator, the 
request ra will trigger the set of admin level queries Qa. 
Now suppose that an attacker logs into the web server as a 
normal user, upgrades his/her privileges, and triggers 
admin queries so as to obtain an administrator’s data. This 
attack can never be detected by either the web server IDS 
or the database IDS since both ru and Qa are legitimate 
requests and queries. Our approach, however, can detect 
this type of attack since the DB query Qa does not match 
the request ru, according to our mapping model. Fig 1 
describes  Privilege Escalation Attack. 

 
Fig 3.1  Privilege Escalation Attack 

2. Hijack Future Session Attack: 
This class of attacks is mainly aimed at the web server side. 
An attacker usually takes over the web server and therefore 
hijacks all subsequent legitimate user sessions to launch 
attacks. For instance, by hijacking other user sessions, the 
attacker can eavesdrop, send spoofed replies, and/or drop 
user requests. A session hijacking attack can be further 
categorized as a Spoofing/Man-in-the-Middle attack, an 
Ex-filtration Attack, a Denial-of-Service/Packet Drop 
attack, or a Replay attack. According to the mapping model, 
the web request should invoke some database queries (e.g., 
a Deterministic Mapping), then the abnormal situation can 
be detected. However, neither a conventional web server 
IDS nor a database IDS can detect such an attack by itself. 
Fortunately, the isolation property of our container-based 
web server architecture can also prevent this type of attack. 
As each user’s web requests are isolated into a separate 
container, an attacker can never break into other users’ 
sessions.  

 
Fig 3.2 Hijack Future Session Attack 

 
3. Injection Attack: 
Attacks such as SQL injection do not require compromising 
the web server. Attackers can use existing vulnerabilities in 
the web server logic to inject the data or string content that 
contains the exploits and then use the web server to relay 
these exploits to attack the back-end database. Since our 

approach provides a two-tier detection, even if the exploits 
are accepted by the web server, the relayed contents to the 
DB server would not be able to take on the expected 
structure for the given web server request. For instance, 
since the SQL injection attack changes the structure of the 
SQL queries, even if the injected data were to go through 
the web server side, it would generate SQL queries in a 
different structure that could be detected as a deviation 
from the SQL query structure that would normally follow 
such a web request.  

 
Fig 3.3 Injection Attack 

 
4. Direct DB Attack: 
It is possible for an attacker to bypass the web server or 
firewalls and connect directly to the database. An attacker 
could also have already taken over the web server and be 
submitting such queries from the web server without 
sending web requests. Without matched web requests for 
such queries, a web server IDS could detect neither. 
Furthermore, if these DB queries were within the set of 
allowed queries, then the database IDS itself would not 
detect it either. However, this type of attack can be caught 
with our approach since we cannot match any web requests 
with these queries. 
 
 
 

 
 
 
 
 

Fig 3.4. Direct DB Attack 
  
 

IV. ARCHITECTURE 
All network traffic, from both legitimate users and 
adversaries, is received intermixed at the same web server. 
If an attacker compromises the web server, he/she can 
potentially affect all future sessions (i.e., session hijacking). 
Assigning each session to a dedicated web server is not a 
realistic option, as it will deplete the web server resources. 
To achieve similar confinement while maintaining a low 
performance and resource overhead, we use lightweight 
virtualization. In our design, we make use of lightweight 
process containers, referred to as “containers,” as 
ephemeral, disposable servers for client sessions. It is 
possible to initialize thousands of containers on a single 
physical machine, and these virtualized containers can be 
discarded, reverted, or quickly reinitialized to serve new 
sessions. A single physical web server runs many 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 828



containers, each one an exact copy of the original web 
server. Our approach dynamically generates new containers 
and recycles used ones. As a result, a single physical server 
can run continuously and serve all web requests. However, 
from a logical perspective, each session is assigned to a 
dedicated web server and isolated from other sessions. 
Since we initialize each virtualized container using a read-
only clean template, we can guarantee that each session 
will be served with a clean web server instance at 
initialization. 
We choose to separate communications at the session level 
so that a single user always deals with the same web server. 
Sessions can represent different users to some extent, and 
we expect the communication of a single user to go to the 
same dedicated web server, thereby allowing us to identify 
suspect behavior by both session and user. If we detect 
abnormal behavior in a session, we will treat all traffic 
within this session as tainted. If an attacker compromises a 
vanilla web server, other sessions’ communications can 
also be hijacked. In our system, an attacker can only stay 
within the web server containers that he/she is connected to, 
with no knowledge of the existence of other session 
communications. We can thus ensure that legitimate 
sessions will not be compromised directly by an attacker.  
 

 
Fig 4.1 classic three tier architecture 

  

 
Fig 4.2 web server instance running in containers 

 
 
In  Fig 4.1 at the database side, we are unable to tell which 
transaction corresponds to which client request. The 
communication between the web server and the database 
server is not separated, and we can hardly understand the 
relationships among them. Figure 4.2 depicts how 

communications are categorized as sessions and how 
database transactions can be related to a corresponding 
session. According to classic three tier architecture, if 
Client 2 is malicious and takes over the web server, all 
subsequent database transactions become suspect, as well 
as the response to the client. By contrast, according to the 
figure of web server instance running in containers, Client 
2 will only compromise the VE 2, and the corresponding 
database transaction set T2 will be the only affected section 
of data within the database. 
Building the Normality Model 
This container-based and session-separated web server 
architecture not only enhances the security performances 
but also provides us with the isolated information flows 
that are separated in each container session. It allows us to 
identify the mapping between the web server requests and 
the subsequent DB queries, and to utilize such a mapping 
model to detect abnormal behaviors on a session/client 
level. In typical three-tiered web server architecture, the 
web server receives HTTP requests from user clients and 
then issues SQL queries to the database server to retrieve 
and update data. These SQL queries are causally dependent 
on the web request hitting the web server. We want to 
model such causal mapping relationships of all legitimate 
traffic so as to detect abnormal/attack traffic.  
In practice, we are unable to build such mapping under a 
classic three-tier setup. Although the web server can 
distinguish sessions from different clients, the SQL queries 
are mixed and all from the same web server. It is 
impossible for a database server to determine which SQL 
queries are the results of which web requests, much less to 
find out the relationship between them. Even if we knew 
the application logic of the web server and were to build a 
correct model, it would be impossible to use such a model 
to detect attacks within huge amounts of concurrent real 
traffic unless we had a mechanism to identify the pair of 
the HTTP request and SQL queries that are causally 
generated by the HTTP request. However, within our 
container-based web servers, it is a straightforward matter 
to identify the causal pairs of web requests and resulting 
SQL queries in a given session. Moreover, as traffic can 
easily be separated by session, it becomes possible for us to 
compare and analyze the request and queries across 
different sessions. Section 4 further discusses how to build 
the mapping by profiling session traffics. To that end, we 
put sensors at both sides of the servers. At the web server, 
our sensors are deployed on the host system and cannot be 
attacked directly since only the virtualized containers are 
exposed to attackers. Our sensors will not be attacked at the 
database server either, as we assume that the attacker 
cannot completely take control of the database server. In 
fact, we assume that our sensors cannot be attacked and can 
always capture correct traffic information at both ends In 
figure of web server instance running in containers  shows 
the locations of our sensors. Once we build the mapping 
model, it can be used to detect abnormal behaviors. Both 
the web request and the database queries within each 
session should be in accordance with the model. If there 
exists any request or query that violates the normality 
model within a session, then the session will be treated as a 
possible attack. 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 829



V. METHODOLOGY 
Modeling Mapping Patterns 
Due to the assorted functionality, different web applications 
exhibit different characteristics. Some websites allow 
regular users with the non- administrative privileges to 
update the contents of the server data. This creates 
challenge for IDS system because the HTTP requests can 
contain variables in the passed parameters .Our approach 
normalizes the variable values in both HTTP requests and 
database queries, preserving the structures of the requests 
and queries. Following this step, session i will have a set of 
requests (Ri), as well as a set of queries (Qi). If the total 
number of sessions of the training phase is N, then we have 
the set of total web requests (REQ) and the set of total SQL 
queries (SQL)across all sessions. Each single web request 
rm REQ may also appear several times in different Ri where 
i = 1,2 . . . N. The same holds true for qn SQL We classify 
the four possible mapping patterns . Since the request is at 
the origin of the data flow, we treat each request as the 
mapping source. The mappings in the model are always in 
the form of one request to a query set rmQn. The possible 
mapping patterns are Deterministic Mapping, Empty Query 
Set, No Matched Request, and Nondeterministic Mapping. 
 

 
Fig 5.1 Overall Representation of mapping patterns 

 
Modelling For Static And Dyanamic Websites : 
In the case of a static website, the nondeterministic 
mapping does not exist as there are no available inputs 
Variables or states for static content. We can easily classify 
the traffic collected by sensors into three patterns 
in order to build the mapping model. As the traffic is 
already separated by session, we begin by iterating all of 
the sessions from 1 to N. For each rm  REQ, we maintain a 
set ARm to record the IDs of sessions in which rm appears. 
The same holds for the database queries. We search for the 
AQs that equals the Arm  . When ARm = AQs, this 
indicates that every time rm appears in a session, then qs 
will also appear in the same session, and vice versa. Some 
web requests that could appear separately are still present 
as a unit. In contrast to static web pages, dynamic web 
pages allow users to generate the same web query with 
different parameters. Additionally, dynamic pages often use 
POST rather than GET methods to commit user inputs. 
Based on the web servers application logic, different inputs 
would cause different database queries. By placing each 
rm , or the set of related requests Rm , in different sessions 
with many different possible inputs, we obtain as many 
candidate query sets { Qn , Qp , Qq . . .} as possible. This 

mapping model includes both deterministic and 
nondeterministic mappings, and the set EQS is still used to 
hold static file requests. 

 
Fig. 5.2 Deterministic Mapping Using Session ID of the 

Container 
 

Static Model Building Algorithm. 
Require: Training Dataset, Threshold t 
Ensure: The Mapping Model for static website 
1: for each session separated traffic Ti do 
2: Get different HTTP requests r and DB queries q in this 
session 
3: for each different r do 
4: if r is a request to static file then 
5: Add r into set EQS 
6: else 
7: if r is not in set REQ then 
8: Add r into REQ 
9: Append session ID i to the set ARr with r as the key 
10: for each different q do 
11: if q is not in set SQL then 
12: Add q into SQL 
13: Append session ID i to the set AQq with q as the key 
14: for each distinct HTTP request r in REQ do 
15: for each distinct DB query q in SQL do 
16: Compare the set ARr with the set AQq 
17: if ARr = AQq and Cardinality(ARr) > t then 
18: Found a Deterministic mapping from r to q 
19: Add q into mapping model set MSr of r 
20: Mark q in set SQL 
21: else 
22: Need more training sessions 
23: return False 
24: for each DB query q in SQL do 
25: if q is not marked then 
26: Add q into set NMR 
27: for each HTTP request r in REQ do 
28: if r has no deterministic mapping model then 
29: Add r into set EQS 
30: return True 
 

VI .PERFORMANCE EVALUATION 
The implementation of our prototype involves the web 
server and the back-end DB. We also used two testing 
websites, static and dynamic. We analyzed three classes of 
attacks and measured the false positive rate for each of the 
two websites. Finally we compared the user behaviour for 
each of the session for a different set of users. The 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 830



following represents the implementation of our prototype 
and the attack detection rates. 
Prototype Implementation 
In our design, we choose to assign every user session into a 
different holder which was the security design decision. 
Each and every new client (IP address) is assigned to a new 
holder and these holders are cast-off or recycled based on 
the session time out .The session time out is considered to 
be 30-minute. Thus, we are capable of running multiple 
instances in a single server. 
The below figure depicts the architecture and session 
management of our prototype, where the host web server 
acts as the dispatcher. In the case of the static website, we 
served 15 unique web pages and collected real traffic to this 
website and obtained 350 user sessions. In the case of the 
dynamic websites, the site visitors are allowed to read , post 
and comment on articles. 

 
Fig. 6.1  the Overall Architecture of Our Prototype 

 
Query Restrictor:  
The Query Restrictor (QR) is a trusted module that restricts 
“Web Server Virtual Machine” 
access  to sensitive database content. In our implementation, 
the QR is a specialized SQL proxy that interposes on all 
databases traffic without requiring changes to the Web 
Server. When Web Server Virtual Machine acting on 
behalf of a user attempts to connect to the database, the QR 
instead connects the client to a separate restricted database 
tailored specifically to that user. Prevents one user from 
retrieving another users data from the database. 
 User Authenticator:  
It binds the executing server code to the users identity. 
Because the Web Server 
Virtual Machine is entrusted, our approach provides UA, to 
authenticate users. For instance, the UA may check 
that the supplied password matches the users entry in the 
database, which the UA accesses via the QR. 
 
Static Website Model in Training Phase 
For the static website, Deterministic Mapping and the 
Empty Query Set Mapping patterns appear in the training 
Sessions . We first collected 150 real user sessions for a 
training data set before making the website public so that 
there was no attack during the training phase. We used part 
of the sessions to train the model and all 
the remaining sessions to test it. For each number on the x-
axis of the following figure, we randomly picked the 

number of sessions from the overall training sessions to 
build the model using the algorithm, and we used the built 
model to test the remaining sessions. We repeated each 
number10 times and obtained the average false positive rate 
(since there was no attack in the training data set). 
 

 
The above diagram shows the training process. As the 
number of sessions used to build the model increased, the 
false positive rate decreased (i.e., the model became more 
accurate). From the same figure, we can observe that after 
taking 35 sessions, the false positive rate decreased and 
stayed at 0. This implies that for our testing static website, 
35 sessions for training would be sufficient to correctly 
build the entire model. Based on this training process 
accuracy graph, we can determine a proper time to stop the 
training. 
 
Dynamic Model Detection Rates 
We also conducted model building experiments for the 
dynamic blog website. We obtained 215 real user traffic 
sessions from the blog under daily workloads. During this 
phase, we made our website available only to internal users 
to ensure that no attacks would occur. We then generated 
10 attack traffic sessions mixed with the normal legitimate 
user session, hence the mixed traffic is used for the attack 
detection. 

 
The above figure shows the ROC curves for the testing 
result. We built our models with different number of 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 831



operations, and each point on the curves indicates the 
threshold value. The threshold value is defined as the 
number of HTTP requests or SQL queries in a session that 
are not matched with the normality model. The nature of 
the false positives comes from the fact that our manually 
extracted basic operations are not sufficient to cover all 
legitimate user behaviors. 
 

CONCLUSION 
We presented an intrusion detection system that builds 
models of normal behavior for multi tired web applications 
from both the front-end web (HTTP) requests and back-end 
database (SQL) queries. Correlation of the input streams 
provides a better characterization of the system for anomaly 
detection because the intrusion sensor has a precise 
normality model that detects a wide range of attacks. We 
achieved this by isolating the information flow from each 
web server session with a virtualization technique. For 
static websites, we built a model which proved to be 
effective at detecting different types of attacks. Hence, we 
are able to identify a wide range of attacks with minimal 
false positives. The False positive rates for the static and 
dynamic websites are 0 and 0.7 respectively. 
 

RESULTS 
1.Privilege Escalation Attack  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Injection Attack: 

 

 
 

 
 
 

 
 
 
3. Hijack Future Session Attack:  

 
 
 

 
 
 
4. Direct DB Attack: 

 
 
 
 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 832



REFERENCES 
[1] “Five Common Web Application Vulnerabilities”, 

http://www.symantec.com/connect/articles/five-common-
webapplication-vulnerabilities 2011. 

[2 ] C. Ko, M. Ruschitzka, and K. Levitt, “Execution Monitoring of 
Security-Critical Programs in Distributed Systems: A Specification-
based Approach.” In Proceedings of the 1997 IEEE Symposium on 
Security and Privacy, pages 175to187, May 1997. 

[3] “Common Vulnerabilities and Exposures”,  
http://www.cve.mitre.org/,2011 

[4 ] B.I.ABarry and H.A. Chan,“Syntax,and semantics-Based Signature 
Database for Hybrid Intrusion Detection Systems,”Security and 
Comm. Networks, vol. 2, no. 6, pp. 457- 475, 2009. 

[5] J. Newsome, B. Karp, and D.X. Song, “Polygraph: Automatically 
Generating Signatures for Polymorphic Worms,” Proc. IEEE 
Symp.Security and Privacy, 2005. 

[6 ] SANS, “The Top Cyber Security Risks,” http://www.sans.org/top-
cyber-security-risks/,2011 

[7 ] A.K. Ghosh, J. Wanken, and F. Charron. , “Detecting Anomalous and 
Unknown Intrusions Against Programs”. In Proceedings of the 
Annual Computer Security Applications Conference (ACSAC'98), 
pages 259to267, Scottsdale, AZ, December 1998. 

[8 ] D.E.Denning.,”An Intrusion Detection Model”. IEEE Transactions on 
Software Engineering, 13(2):222to232,February 1987. 

[9 ] T. Lane and C.E. Brodley. “Temporal sequence learning and data 
reduction for anomaly detection”. InProceedings of the 5th ACM 
conference on Computer and communications security, pages 150 
to158. ACM Press, 1998. 

[10] A. Schulman, “Top 10 Database Attacks,” 
http://www.bcs.org/server.php?show=ConWebDoc.8852, 2011.  

[11] C. Kruegel and G. Vigna, “Anomaly Detection of Web-Based 
Attacks,” Proc. 10th ACM Conf. Computer and Comm. Security 
(CCS ‟03), Oct. 2003. 

[12 ] H.-A. Kim and B. Karp, “Autograph: Toward Automated Distributed 
Worm Signature Detection,” Proc. USENIX Security Symp., 2004. 

[13 ] T. Pietraszek and C.V. Berghe, “Defending against Injection Attacks 
through Context-Sensitive String Evaluation,” Proc. Int‟lSymp. 
Recent Advances in Intrusion Detection (RAID ‟05), 2005. 

[14] G.E. Suh, J.W. Lee, D. Zhang, and S. Devadas, “Secure Program 
Execution via Dynamic Information Flow Tracking,” ACM 
SIGPLAN Notices, vol. 39, no. 11, pp. 85-96, Nov. 2004. 

[15] T.H. Ptacek and T.N. Newsham. “Insertion, Evasion and Denial of 
Service: Eluding Network Intrusion Detection”.Technical report, 
Secure Networks, January 1998. 

[16] G. Vigna, W.K. Robertson, V. Kher, and R.A. Kemmerer, “A Stateful 
Intrusion Detection System for World-Wide Web Servers,”Proc. 
Ann. Computer Security Applications Conf. (ACSAC ‟03),2003. 

[17] A. Seleznyov and S. Puuronen, “Anomaly Intrusion Detection 
Systems: Handling Temporal Relations between Events,” Proc Int‟l 
Symp. Recent Advances in Intrusion Detection (RAID ‟99), 1999. 

[18] M. Roesch,“Snort, Intrusion Detection system,” www.snort.org/2011. 
[19] W. Lee, S.J. Stolfo, “Data Mining Approaches for Intrusion 

Detection”, Proceedings of the USENIX Security Symposium, pp. 
79-94 (1998). 

[20] Liang and Sekar, “Fast and Automated Generation of Attack 
Signatures: A Basis for Building self-Protecting Servers,” 
SIGSAC:Proc. 12th ACM Conf. Computer and Comm. Security, 
2005. 

[21] Meixing Le, AngelosStavrou, BrentByungHoon Kang,” DoubleGuard: 
Detecting Intrusions in Multitier Web Applications”, IEEE 
transactions on dependable and secure computing, vol. 9, no. 
4,July/august 2012. 

[22] D. Bates, A. Barth, and C. Jackson, “Regular Expressions Considered 
Harmful in Client-Side XSS Filters,” Proc. 19th Int‟lConf. World 
Wide Web, 2010. 

 

A Yugandhara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 826-833

www.ijcsit.com 833




